

Greenex™ CSD

Controlling water quality in cooling systems

Common Problems With Water Within Cooling Systems

Corrosion

Capacity to transfer heat is reduced
Equipments may be corroded causing
leakage Equipments and parts may be
damaged and blockage may occur in
piping systems

Scale Deposit

The system does not run effectively

Corrosion occurs under scale layer

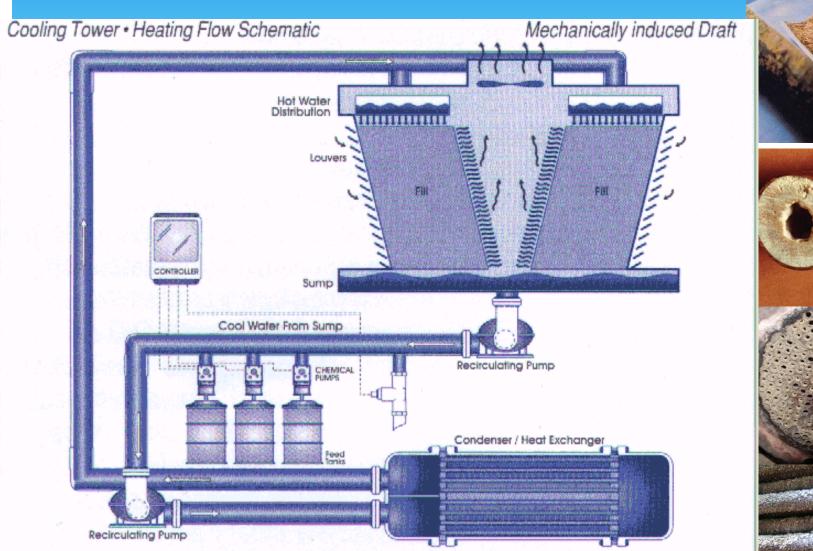
Bio-Fouling and Sludge Accumulation

Corrosion occurs under sludge layer

Accumulation leads to unclean system

Scale Deposit

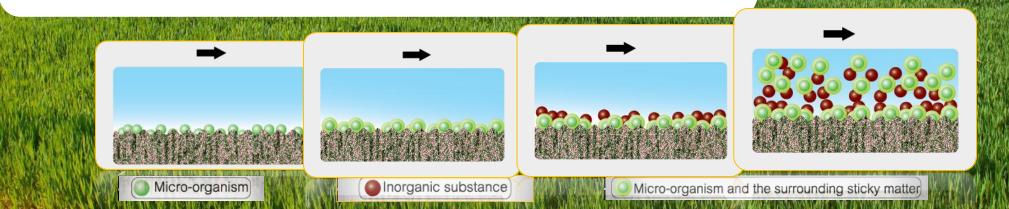
Scale deposition is a natural occurrence caused by the precipitation of mineral constituents dissolved in the water.


It mostly occurs when temperature fluctuates.

Most scale are calcium carbonate, which is less soluble in water.

Other deposition such as magnesium carbonate, calcium-magnesium sulfate and calcium-magnesium bicarbonate may also be found.

Most Problem of Cooling Water Systems is Scale



Bio-Fouling and Sludge Accumulation

Bio-fouling is caused by the growth and reproduction of bacteria and other micro organism.

The condition of cooling water within the cooling system is suitable for such growth which happen on the system's inner walls contributes to a problem of bio-fouling and sludge accumulation.

Greenex™ CSD: Cooling System Detox

1 plant extract active ingredients

2 biodegradability

Save energy, money, water, and time

Convenient with high efficiency

An innovation for cooling system

Features

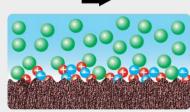
1. Dissolves old scale and prevent new scale formation

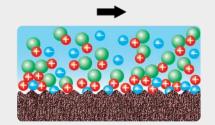
2. Loosen old deposited scale

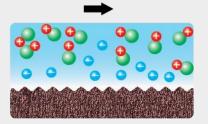
4. Inhibits scale deposition

5. Prevents bio-film formation

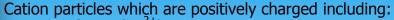

3. Enhances the system heat exchanging capacity


6. Reduces the amount of dirty particle from attaching to inner walls




Functions

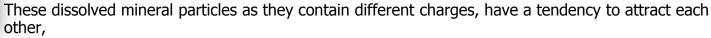
- 1 Dissolves old scale and prevent new scale formation
 - 2 Loosen old deposited scale
 - Enhances the system heat exchanging capacity
 - Inhibits scale deposition



Scale is a natural phenomenal caused by the crystallization of ionized mineral dissolved in water, which may be classified into 2 groups according to their polar nature:

Calcium (Ca²⁺)

Magnesium (Mg²⁺)



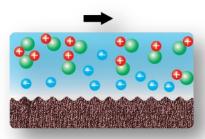
Anion particles which are negatively charged including:

Chloride (Cl ⁻)

Sulfate (SO 2-)

Carbonate (CO) Bicarbonate (HCO₃)

for example:


Calcium/Magnesium Carbonate

Calcium/Magnesium Bicarbonate

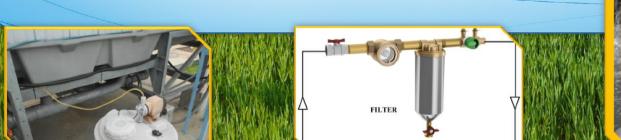
Calcium/ Magnesium Sulfate

Calcium/ Magnesium Chloride

These dissolved mineral are a major and difficult problem in cooling systems. They may form hard scale on the walls within the system, especially where temperature changes may occur, such as the heat exchanging units.

Solving Scale Problem with Greenex™ CSD

The principles in solving the problem of scale formation by using Greenex products are based on controlling the scale formation by keeping the dissolved mineral suspended in solution. By binding with the cation particles, the 2 ionic particles are kept in separation and dissolved. As the result, scaling will less likely occur. Also the products have the ability to dissolve old scale by utilizing organic acids, scale that had already formed within the system will soften and may be cleaned or flushed off easily.



Applications

- Add the product at the ratio of 500 ppm or 500 ml. : 1 m³.

 (1,000 Liter) of water in the system / week (0.5 L/Cu.m/week)
- Side Stream Filters may be implemented to recycle discharged water.
- If required an application of biocide, the product may be use together

without any lost in effectiveness.

Benefits

- Safe energy and water consumption
- Safe time and money
- Cost of maintenance is constant
- Cleaner system and safer for users
- Does not react with metal, nylon, and plastic parts within the system
- Environmentally friendly

BIODEGRADABILITY OF GREENEX ™ PRODUCTS

GREENEX-NF(for non –ferrous mental cleaner) 82%
GREENEX-FC(for ferrous mental cleaner) 91%
GREENEX-CSD (Cooling System detox) 91%

Products

	No.	Products	Properties	Dosage
	1	Greenex CSD	3 in 1 Cooling System Detox	500 ppm/cu.m/week
2 Greenex C		Greenex CSD-CL	3 in 1 Cooling System Detox for Close Loop	500 ppm/cu.m/3 months
	3	Greenex R&S F1	Rust and Scale Remover from cooling system	2-10% by volume, circulation 2-24 hours.
	4	Greenex Algaecide	Algaecide for cooling system	1L:2000-8000L.

Greenex Dosing Pump

Feature & Benefits

Automatic and easy to use for transferring a precise volume of liquid or chemicals in a specified time period providing an accurate flow rate. With the use of timer the pump can start working automatically without any user and time for the pump to work each time can also be set to give a precise volume of liquid.

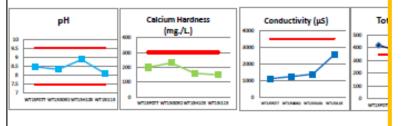
- 1. Display the frequency
- 2. Adjust the stroke length
- 3. Increase the frequency
- Reduce the frequency
- 5. Open/Close
- 6. Power Connection

Specification					
Stroke Length	20-100 %				
Stroke Frequency	0-100 %				
Flow	1.0 L/H				
Pressure	10 Bar				
Voltage	220 V				
Power	28 W				
Ambient Temp	-10°C ∼ 45°C				
Pump Material	PVC				

Timer

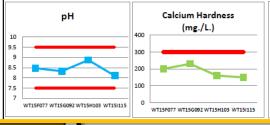
- 1. Display the time
- 2. Adjust the time for the pump to work each time
- 3. Unit of time for the pump to work each time
- 4. Adjust time period for the pump to start working
- 5. Unit of time for the pump to start working

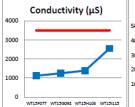
Monitoring Lab Report


Metal Working Fluids Analysis for Predictive Maintenance & Full Efficiency

Sample Information:						
Report Number.:	WT15I115					
Company:	Kasal Teck See CO., LTD.					
Address :	150/59 Pinthong Industrial Estate 2 Moo 9 T.Nongkham, A.Sriracha					
Address .	Chonburi Province 20230					
Contact Person: K.Noppol						

Contact Person : K.Noppol Sample Name : Greenex CSD


Machine :	Cooling Tower	Manufacturing:	Automo
Date Sample :	23/9/2015	System Age : May 14	16 mont
Date Received:	22/9/2015		


Analysis Report:								
				Test Reporte				
Test Criteria	Test Method	Unit	Specification	WT15F077	WT15G092	WT15		
				4/6/2015	10/7/2015	19/8/2		
Appearance	Observation							
				Light Yellow/Clea	light Yellow/Clea Light Y			
Temperature IN	Thermometer	°c		-	30	31.		
Temperature OUT	Thermometer	°c			27	30.		
GAP of Temp.	Cal.	°င		-	3	1.7		
pH	pH Meter		6.5-8.5	8.47	8.32	8.8		
Conductivity	Conductivity Meter	μS	< 3,500	1,120	1,250	1,3		
Total Dissolve Solids	Electrometric	mg./L.	< 1,500	754	674	73		
Total Hardness	EDTA-Titrimetric	mg/Las CaCO ₃	< 350	420	370	25		
Calcium Hardness	EDTA-Titrimetric	mg/Las CeCO.	< 300	200	230	16		

ale Neceived.	23/8/2010

Analysis Report:							
				Test Reported			
Test Criteria	Test Method	Unit	Specification	WT15F077	WT15G092	WT15H103	WT15I115
				4/6/2015	10/7/2015	19/8/2015	23/9/2015
Appearance	Observation						
				Light Yellow/Clea	Light Yellow/Clear	Light Yellow/Clear	Light Yellow/Lees
Temperature IN	Thermometer	°C		-	30	31.9	-
Temperature OUT	Thermometer	°C		-	27	30.2	-
GAP of Temp.	Cal.	°C		-	3	1.7	-
pH	pH Meter	-	6.5-8.5	8.47	8.32	8.87	8.1
Conductivity	Conductivity Meter	μS	< 3,500	1,120	1,250	1,390	2,550
Total Dissolve Solids	Electrometric	mg./L.	< 1,500	754	674	735	1330
Total Hardness	EDTA-Titrimetric	mg./L.as CaCO ₃	< 350	420	370	252	250
Calcium Hardness	EDTA-Titrimetric	mg./L.as CaCO ₃	< 300	200	230	160	150

Suggestion and R	Suggestion and Recommendation:								
WT16I116	Water in specification.								
WT15H103	Water in specification.								
WT15G092	Total Hardness above spec, drain water out and refill new water.								
WT15F077	Total Hardness above spec, drain water out and refill new water.								
Laboratory Signature:	K.Tawichat Date: 2 Oct 15 Approved Code: BAA								

Siam Kubota

- * Greenex R&S F1 >>> Cleaning cooling pipe line
- * Greenex CSD >>> Cooling Tower Treatment

Survey Form

- 1. What kind of factory?
- 2. Gap Temp (In-Out)?
- 3. Quantity of water in system (Liters)?
- 4. Water supply quality (sample)?
- 5. What chemical supply in system?
- 6. Any problem in system? (scale, rust, algae, gap temp, electric consump, etc.)

Greenex* CSD Thank You For Your Time!

